metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Potassium N-chlorobenzenesulfonamidate monohydrate

B. Thimme Gowda,^a* Sabine Foro,^b Jozef Kožíšek^c and Hartmut Fuess^b

^aDepartment of Chemistry, Mangalore University, Mangalagangotri-574 199, Mangalore, India, ^bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287, Darmstadt, Germany, and CDepartment of Physical Chemistry, Slovak University of Technology, Radlinského 9, SK-812 37 Bratislava, Slovak Republic.

Correspondence e-mail: gowdabt@yahoo.com

Received 12 May 2007; accepted 16 May 2007

Key indicators: single-crystal X-ray study; T = 303 K; mean σ (C–C) = 0.009 Å; R factor = 0.046; wR factor = 0.123; data-to-parameter ratio = 14.2.

In the title compound, $K^+ \cdot C_6 H_5 C I N O_2 S^- \cdot H_2 O$, the S-N distance of 1.581 (4) Å is consistent with an S=N double bond. The ions and molecules in the crystal structure are held together by $O-H \cdots N$ hydrogen bonds.

Related literature

For related literature, see: George et al. (2000); Gowda & Shetty (2004); Gowda et al. (2003, 2005); Gowda, Jyothi et al. (2007); Gowda, Kozisek et al. (2007); Gowda, Savitha et al. (2007); Gowda, Srilatha et al. (2007); Jyothi & Gowda (2004); Olmstead & Power (1986).

Experimental

Crystal data K⁺.C₆H₅ClNO₂S⁻.H₂O $M_r = 247.74$ Orthorhombic Phca a = 10.214 (1) Å b = 6.8111 (4) Å c = 28.336(1) Å

Data collection

Enraf-Nonius CAD-4 diffractometer Absorption correction: ψ scan (North et al., 1968) $T_{\min} = 0.305, \ T_{\max} = 0.798$ 1953 measured reflections

V = 1971.3 (2) Å³ Z = 8 $Cu K\alpha$ radiation $\mu = 9.03 \text{ mm}^{-1}$ T = 303 (2) K $0.22 \times 0.13 \times 0.03 \text{ mm}$

1756 independent reflections 1102 reflections with $I > 2\sigma(I)$ $R_{int} = 0.035$ 3 standard reflections frequency: 120 min

intensity decay: 4.8%

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.046$ $wR(F^2) = 0.123$	H atoms treated by a mixture of independent and constrained
S = 0.99	refinement
1756 reflections	$\Delta \rho_{\rm max} = 0.27 \ {\rm e} \ {\rm \AA}^{-3}$
124 parameters	$\Delta \rho_{\rm min} = -0.38 \text{ e} \text{ Å}^{-3}$
2 restraints	

Table 1	
Hydrogen-bond geometry (Å, °).	

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{array}{c} O3 - H31 O \cdots N1^{i} \\ O3 - H32 O \cdots N1^{ii} \end{array}$	0.849 (10)	2.17 (3)	2.948 (5)	152 (5)
	0.846 (10)	2.21 (3)	3.007 (5)	156 (5)

Symmetry codes: (i) $x - \frac{1}{2}, -y + \frac{1}{2}, -z + 1$; (ii) -x + 2, -y, -z + 1.

Data collection: CAD-4-PC (Enraf-Nonius, 1996); cell refinement: CAD-4-PC; data reduction: REDU4 (Stoe & Cie, 1987); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

BTG gratefully thanks the Alexander von Humboldt Foundation, Bonn, Germany for extensions of his research fellowship. JK thanks the Grant Agency of the Slovak Republic (grant No. 1/2449/05).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2364).

References

- George, E., Vivekanandan, S. & Sivakumar, K. (2000). Acta Cryst. C56, 1208-1209
- Gowda, B. T., Damodara, N. & Jyothi, K. (2005). Int. J. Chem. Kinet. 37, 572-582
- Gowda, B. T., D'Souza, J. D. & Fuess, H. (2003). Z. Naturforsch. Teil A, 58, 220-224.
- Gowda, B. T., Jyothi, K., Foro, S., Kozisek, J. & Fuess, H. (2007). Acta Cryst. E63, m1644
- Gowda, B. T., Kozisek, J., Tokarcik, M. & Fuess, H. (2007). Acta Cryst. E63, 02967
- Gowda, B. T., Savitha, M. B., Kozisek, J., Tokarcik, M. & Fuess, H. (2007). Acta Crvst. E63, m1646.
- Gowda, B. T. & Shetty, M. (2004). J. Phys. Org. Chem. 17, 848-864.
- Gowda, B. T., Srilatha, Foro, S., Kozisek, J. & Fuess, H. (2007). Z. Naturforsch. Teil A, 62. In the press.
- Jyothi, K. & Gowda, B. T. (2004). Z. Naturforsch. Teil A, 59, 64-68.
- Enraf-Nonius (1996). CAD-4-PC. Enraf-Nonius, Delft, The Netherlands.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359
- Olmstead, M. M. & Power, P. P. (1986). Inorg. Chem. 25, 4057-4058.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Spek, A. L. (2003). PLATON. J. Appl. Cryst. 36, 7-13.
- Stoe & Cie (1987). REDU4. Version 6.2c. Stoe & Cie GmbH, Darmstadt, Germany.

Acta Cryst. (2007). E63, m1688 [doi:10.1107/S1600536807024178]

Potassium N-chlorobenzenesulfonamidate monohydrate

B. T. Gowda, S. Foro, J. Kozísek and H. Fuess

Comment

The chemistry of arylsulfonamides and their N-halo compounds is of interest as they show distinct physical, chemical and biological properties. Many of these compounds exhibit pharmacological, fungicidal and herbicidal activities due to their oxidizing action in aqueous, partial aqueous and non-aqueous media. Thus, N-halo arylsulfonamides are of interest in synthetic, mechanistic, analytical and biological chemistry (Gowda *et al.*, 2005; Gowda & Shetty, 2004). In the present work, the structure of potassium *N*- chlorobenzenesulfonamde has been determined to explore the effect of substitution and replacing a sodium ion by a potassium ion on the solid state structures of *N*-chloroarylsulfonamides (Gowda, Jyothi *et al.*, 2007; Gowda, Kozisek *et al.*, 2007; Gowda, Savitha *et al.*, 2007; Gowda, Srilatha *et al.*, 2000) and other sodium *N*-chloro-arylsulfonamides (Olmstead & Power, 1986; Gowda, Jyothi *et al.*, 2007; Gowda, Kozisek *et al.*, 2007; Gowda, Srilatha *et al.*, 2

Experimental

The title compound was prepared according to the literature method (Gowda *et al.*, 2003; Jyothi & Gowda, 2004). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared, NMR (Jyothi & Gowda, 2004) and NQR spectra (Gowda *et al.*, 2003). Single crystals of the title compound were obtained from a slow evaporation of its chloroform solution and used for X-ray diffraction studies at room temperature.

Refinement

H atoms bonded to C were positioned geometrically and refined using a riding model with C—H = 0.93 Å and with $U_{iso}(H)$ = 1.2 $U_{eq}(C,O)$. The coordinates of the H atoms bonded to O were refined with a distance restraint of 0.84 (1) Å.

Figures

Fig. 1. Molecular structure of the title compound showing the atom labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2. Packing diagram viewed down the axis b

Potassium N-chlorobenzenesulfonamidate monohydrate

 $F_{000} = 1008$

 $\lambda = 1.54180 \text{ Å}$

 $\theta = 8.7 - 25.0^{\circ}$

 $\mu = 9.03 \text{ mm}^{-1}$

T = 303 (2) K

Laminar, colourless

 $0.22\times0.13\times0.03~mm$

 $D_{\rm x} = 1.669 \text{ Mg m}^{-3}$ Cu *K* α radiation

Cell parameters from 25 reflections

Crystal data

 $K^+.C_6H_5CINO_2S^-.H_2O$ $M_r = 247.74$ Orthorhombic, *Pbca* Hall symbol: -P 2ac 2ab a = 10.214 (1) Å b = 6.8111 (4) Å c = 28.336 (1) Å V = 1971.3 (2) Å³ Z = 8

Data collection

Enraf–Nonius CAD-4 diffractometer	$R_{\rm int} = 0.035$
Radiation source: fine-focus sealed tube	$\theta_{\text{max}} = 66.9^{\circ}$
Monochromator: graphite	$\theta_{\min} = 3.1^{\circ}$
T = 303(2) K	$h = 0 \rightarrow 12$
$\omega/2\theta$ scans	$k = 0 \rightarrow 8$
Absorption correction: Psi-scan (North <i>et al.</i> , 1968)	$l = -3 \rightarrow 33$
$T_{\min} = 0.305, \ T_{\max} = 0.798$	3 standard reflections
1953 measured reflections	every 120 min
1756 independent reflections	intensity decay: 4.8%
1102 reflections with $I > 2\sigma(I)$	

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.046$ $wR(F^2) = 0.123$ S = 0.991756 reflections 124 parameters 2 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0611P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.27$ e Å⁻³ $\Delta\rho_{min} = -0.38$ e Å⁻³ Extinction correction: none

sup-2

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C1	0.9541 (5)	0.7329 (6)	0.35902 (15)	0.0416 (10)
C2	0.8421 (5)	0.7230 (8)	0.33231 (18)	0.0579 (14)
H2	0.7687	0.6566	0.3434	0.070*
C3	0.8404 (8)	0.8127 (10)	0.2891 (2)	0.083 (2)
H3	0.7651	0.8057	0.2707	0.100*
C4	0.9464 (10)	0.9120 (9)	0.2723 (2)	0.090 (2)
H4	0.9435	0.9736	0.2430	0.108*
C5	1.0569 (8)	0.9193 (9)	0.2992 (2)	0.081 (2)
Н5	1.1301	0.9855	0.2879	0.097*
C6	1.0622 (5)	0.8313 (8)	0.34244 (19)	0.0566 (13)
H6	1.1381	0.8378	0.3605	0.068*
N1	1.0836 (4)	0.4749 (6)	0.41555 (14)	0.0477 (10)
01	0.9920 (3)	0.7666 (5)	0.44928 (11)	0.0544 (9)
O2	0.8372 (3)	0.5189 (5)	0.42122 (12)	0.0524 (9)
O3	0.7965 (4)	-0.1477 (6)	0.52779 (12)	0.0558 (9)
H31O	0.744 (4)	-0.130 (8)	0.5507 (12)	0.067*
H32O	0.823 (5)	-0.260 (4)	0.5366 (19)	0.067*
S1	0.96138 (11)	0.61724 (16)	0.41499 (4)	0.0386 (3)
Cl1	1.06255 (14)	0.2980 (2)	0.37111 (5)	0.0634 (4)
K1	0.88083 (10)	0.14650 (14)	0.46609 (4)	0.0455 (3)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.049 (2)	0.036 (2)	0.039 (2)	0.004 (2)	0.003 (2)	-0.001 (2)
C2	0.068 (3)	0.050 (3)	0.056 (3)	0.004 (3)	-0.009 (3)	0.001 (3)
C3	0.115 (6)	0.072 (4)	0.062 (4)	0.026 (4)	-0.034 (4)	-0.001 (4)
C4	0.170 (8)	0.054 (4)	0.046 (3)	0.026 (5)	0.008 (5)	0.005 (3)
C5	0.128 (6)	0.050 (3)	0.064 (4)	-0.001 (4)	0.046 (4)	0.011 (3)
C6	0.063 (3)	0.049 (3)	0.058 (3)	-0.007 (3)	0.006 (3)	-0.003 (3)
N1	0.049 (2)	0.039 (2)	0.055 (2)	0.0110 (18)	-0.011 (2)	-0.013 (2)
01	0.071 (2)	0.0441 (18)	0.0480 (19)	0.0053 (18)	-0.0023 (17)	-0.0096 (16)

O2 O3 S1 C11 K1	0.0446 (17) 0.060 (2) 0.0419 (6) 0.0751 (9) 0.0518 (6)	0.0498 (19) 0.049 (2) 0.0346 (5) 0.0501 (7) 0.0368 (5)	0.063 (2) 0.058 (2) 0.0392 (5) 0.0651 (8) 0.0480 (5)	-0.0084 (16) 0.003 (2) 0.0010 (5) 0.0151 (7) -0.0006 (5)	0.0104 (16) 0.0111 (17) 0.0016 (5) -0.0009 (7) -0.0067 (5)	0.0080 (18) 0.007 (2) -0.0005 (5) -0.0155 (7) 0.0033 (5)
Geometric param	neters (Å, °)					
C1—C2		1.373 (7)	O2—S1		1.44	5 (3)
C1—C6		1.375 (7)	O2—K1	1 ⁱⁱⁱ	2.70	8 (3)
C1—S1		1.772 (4)	O2—K1	1	2.87	2 (4)
C2—C3		1.370 (8)	O3—K1	1	2.79	5 (4)
С2—Н2		0.9300	O3—K1	l ^{iv}	2.88	1 (4)
C3—C4		1.362 (10)	O3—K1	1 ^v	3.30	1 (4)
С3—Н3		0.9300	O3—H3	310	0.84	9 (10)
C4—C5		1.362 (9)	O3—H3	320	0.84	6 (10)
C4—H4		0.9300	S1—K1		3.61	30 (15)
C5—C6		1.366 (8)	S1—K1	1	3.78	86 (15)
C5—H5		0.9300	CII—K	l	3.42	85 (18)
Co—Ho		0.9300	K1—02	21,	2.70	8 (3)
NI—SI		1.581 (4)	K1—01		2.79	1 (3)
NI—CII		1.756 (4)	K1—01		2.86	5 (3)
N1—K1		3.368 (4)	K1—03	3111	2.88	1 (4)
01—S1		1.441 (3)	K1—03	3 ^v	3.30	1 (4)
$O1-K1^{i}$		2.791 (3)	K1—K1	1 ^v	3.68	8 (2)
O1—K1 ⁱⁱ		2.865 (3)	K1—S1	iv	3.78	86 (15)
C2—C1—C6		120.3 (5)	O1 ⁱ —K	1—02	105.	39 (11)
C2—C1—S1		120.4 (4)	O3—K1	1—02	149.	56 (10)
C6-C1-S1		119.2 (4)	O1 ^{vi} —F	K1—O2	141.	75 (10)
C3—C2—C1		118.8 (6)	O2 ^{iv} —F	K1—O3 ⁱⁱⁱ	85.6	5 (11)
С3—С2—Н2		120.6	O1 ⁱ —K	1—O3 ⁱⁱⁱ	70.6	1 (10)
С1—С2—Н2		120.6	O3—K1	1—O3 ⁱⁱⁱ	77.0	3 (8)
C4—C3—C2		121.6 (6)	O1 ^{vi} —F	K1—O3 ⁱⁱⁱ	142.	11 (10)
С4—С3—Н3		119.2	O2—K1	l—O3 ⁱⁱⁱ	75.0	2 (10)
С2—С3—Н3		119.2	O2 ^{iv} —F	K1—O3 ^v	147.	86 (11)
C5—C4—C3		118.7 (6)	O1 ⁱ —K	1—03 ^v	59.3	0 (10)
С5—С4—Н4		120.6	O3—K1	$1 - O3^{v}$	106.	07 (9)
С3—С4—Н4		120.6	O1 ^{vi} —F	K1—O3 ^v	67.3	8 (10)
C4—C5—C6		121.3 (6)	O2—K1	1—O3 ^v	100.	14 (10)
С4—С5—Н5		119.4	O3 ⁱⁱⁱ —F	$X1 - O3^{v}$	126.	49 (7)
С6—С5—Н5		119.4	O2 ^{iv} —F	K1—N1	121.	29 (10)
C5—C6—C1		119.3 (6)	01 ⁱ —K	1—N1	86.4	6 (10)
С5—С6—Н6		120.4	03—K	l—N1	158.	67 (10)

С1—С6—Н6	120.4	O1 ^{vi} —K1—N1	106.57 (10)
S1—N1—Cl1	108.5 (2)	O2—K1—N1	47.22 (9)
S1—N1—K1	85.74 (16)	O3 ⁱⁱⁱ —K1—N1	108.76 (10)
Cl1—N1—K1	76.94 (14)	O3 ^v —K1—N1	53.59 (9)
S1—O1—K1 ⁱ	146.1 (2)	O2 ^{iv} —K1—Cl1	99.98 (8)
S1—O1—K1 ⁱⁱ	131.57 (19)	O1 ⁱ —K1—Cl1	111.02 (8)
K1 ⁱ —O1—K1 ⁱⁱ	81.38 (9)	O3—K1—Cl1	150.88 (8)
S1—O2—K1 ⁱⁱⁱ	129.1 (2)	O1 ^{vi} —K1—Cl1	85.80 (8)
S1—O2—K1	109.11 (17)	O2—K1—Cl1	58.04 (7)
K1 ⁱⁱⁱ —O2—K1	101.73 (10)	O3 ⁱⁱⁱ —K1—Cl1	132.09 (8)
K1—O3—K1 ^{iv}	99.38 (11)	O3 ^v —K1—Cl1	59.99 (7)
K1—O3—K1 ^v	73.93 (9)	N1—K1—Cl1	29.93 (7)
K1 ^{iv} —O3—K1 ^v	131.37 (13)	O2 ^{iv} —K1—S1	106.50 (8)
K1—O3—H31O	125 (4)	01 ⁱ —K1—S1	92.88 (8)
K1 ^{iv} —O3—H31O	98 (4)	O3—K1—S1	163.14 (9)
K1 ^v —O3—H31O	126 (4)	O1 ^{vi} —K1—S1	130.12 (8)
K1—O3—H32O	137 (4)	O2—K1—S1	22.21 (6)
K1 ^{iv} —O3—H32O	87 (4)	O3 ⁱⁱⁱ —K1—S1	87.40 (8)
K1 ^v —O3—H32O	71 (4)	O3 ^v —K1—S1	77.96 (7)
H310—O3—H32O	96 (5)	N1—K1—S1	25.88 (6)
O1—S1—O2	115.8 (2)	Cl1—K1—S1	45.17 (3)
01—S1—N1	104.8 (2)	$O2^{iv}$ —K1—K1 ^v	127.87 (8)
O2—S1—N1	114.1 (2)	$O1^{i}$ —K1—K1 ^v	50.19 (7)
01—S1—C1	107.4 (2)	O3—K1—K1 ^v	59.32 (8)
O2—S1—C1	106.2 (2)	$O1^{vi}$ —K1—K1 ^v	48.43 (7)
N1—S1—C1	108.4 (2)	O2—K1—K1 ^v	144.19 (8)
01—S1—K1	113.93 (14)	$O3^{iii}$ —K1—K1 ^v	111.22 (8)
O2—S1—K1	48.69 (14)	$O3^{v}$ —K1—K1 ^v	46.75 (7)
N1—S1—K1	68.38 (16)	N1—K1—K1 ^v	100.07 (7)
C1—S1—K1	138.02 (15)	Cl1—K1—K1 ^v	102.39 (5)
O1—S1—K1 ⁱⁱⁱ	84.57 (15)	S1—K1—K1 ^v	122.60 (5)
O2—S1—K1 ⁱⁱⁱ	33.70 (14)	$O2^{iv}$ —K1—S1 ^{iv}	17.23 (7)
N1—S1—K1 ⁱⁱⁱ	139.20 (16)	O1 ⁱ —K1—S1 ^{iv}	140.27 (8)
C1—S1—K1 ⁱⁱⁱ	106.24 (16)	O3—K1—S1 ^{iv}	85.24 (8)
K1—S1—K1 ⁱⁱⁱ	71.54 (3)	O1 ^{vi} —K1—S1 ^{iv}	104.75 (8)
N1—Cl1—K1	73.13 (14)	$O2-K1-S1^{iv}$	74.58 (7)
$O2^{iv}$ —K1—O1 ⁱ	148.70 (11)	O3 ⁱⁱⁱ —K1—S1 ^{iv}	71.19 (8)
O2 ^{iv} —K1—O3	79.05 (11)	$O3^{v}$ —K1—S1 ^{iv}	160.31 (7)
O1 ⁱ —K1—O3	76.00 (11)	N1—K1—S1 ^{iv}	116.09 (7)
O2 ^{iv} —K1—O1 ^{vi}	87.59 (10)	Cl1—K1—S1 ^{iv}	102.43 (4)
01 ⁱ —K1—O1 ^{vi}	98.62 (9)	S1—K1—S1 ^{iv}	95.94 (4)

O3—K1—O1 ^{vi}	65.09 (10)	K1 ^v —K1—S1 ^{iv}	141.23 (5)
02 ^{iv} —K1—02	87.02 (9)		
C6—C1—C2—C3	0.0 (8)	S1—O2—K1—S1 ^{iv}	-163.7 (2)
S1—C1—C2—C3	-179.4 (4)	K1 ⁱⁱⁱ —O2—K1—S1 ^{iv}	57.42 (9)
C1—C2—C3—C4	-0.5 (9)	S1—N1—K1—O2 ^{iv}	60.56 (19)
C2—C3—C4—C5	0.8 (10)	Cl1—N1—K1—O2 ^{iv}	-49.51 (17)
C3—C4—C5—C6	-0.7 (10)	S1—N1—K1—O1 ⁱ	-104.06 (16)
C4—C5—C6—C1	0.2 (9)	Cl1—N1—K1—O1 ⁱ	145.87 (14)
C2—C1—C6—C5	0.1 (7)	S1—N1—K1—O3	-138.5 (3)
S1—C1—C6—C5	179.6 (4)	Cl1—N1—K1—O3	111.4 (3)
K1 ⁱ —O1—S1—O2	94.6 (4)	S1—N1—K1—O1 ^{vi}	158.00 (14)
K1 ⁱⁱ —O1—S1—O2	-69.3 (3)	Cl1—N1—K1—O1 ^{vi}	47.93 (15)
K1 ⁱ —O1—S1—N1	-31.9 (4)	S1—N1—K1—O2	10.75 (13)
K1 ⁱⁱ —O1—S1—N1	164.2 (2)	Cl1—N1—K1—O2	-99.32 (17)
K1 ⁱ —O1—S1—C1	-147.0 (4)	S1—N1—K1—O3 ⁱⁱⁱ	-35.91 (17)
K1 ⁱⁱ —O1—S1—C1	49.1 (3)	Cl1—N1—K1—O3 ⁱⁱⁱ	-145.98 (13)
K1 ⁱ —O1—S1—K1	40.6 (4)	S1—N1—K1—O3 ^v	-157.9 (2)
K1 ⁱⁱ —O1—S1—K1	-123.28 (19)	Cl1—N1—K1—O3 ^v	92.03 (15)
K1 ⁱ —O1—S1—K1 ⁱⁱⁱ	107.7 (3)	S1—N1—K1—Cl1	110.1 (2)
K1 ⁱⁱ —O1—S1—K1 ⁱⁱⁱ	-56.2 (2)	Cl1—N1—K1—S1	-110.1 (2)
K1 ⁱⁱⁱ —O2—S1—O1	23.9 (3)	S1—N1—K1—K1 ^v	-152.57 (13)
K1—O2—S1—O1	-100.1 (2)	Cl1—N1—K1—K1 v	97.36 (12)
K1 ⁱⁱⁱ —O2—S1—N1	145.6 (2)	S1—N1—K1—S1 ^{iv}	41.80 (16)
K1—O2—S1—N1	21.6 (3)	Cl1—N1—K1—S1 ^{iv}	-68.27 (13)
K1 ⁱⁱⁱ —O2—S1—C1	-95.2 (3)	N1—C11—K1—O2 ^{iv}	138.71 (15)
K1—O2—S1—C1	140.88 (18)	N1—C11—K1—O1 ⁱ	-36.86 (15)
K1 ⁱⁱⁱ —O2—S1—K1	123.9 (3)	N1—Cl1—K1—O3	-135.9 (2)
K1—O2—S1—K1 ⁱⁱⁱ	-123.9 (3)	N1—Cl1—K1—O1 ^{vi}	-134.49 (15)
Cl1—N1—S1—O1	-175.0 (2)	N1—Cl1—K1—O2	58.61 (15)
K1—N1—S1—O1	110.29 (16)	N1—Cl1—K1—O3 ⁱⁱⁱ	45.55 (17)
Cl1—N1—S1—O2	57.4 (3)	N1—Cl1—K1—O3 ^v	-68.25 (15)
K1—N1—S1—O2	-17.3 (2)	N1—Cl1—K1—S1	35.31 (13)
Cl1—N1—S1—C1	-60.6 (3)	N1—Cl1—K1—K1 v	-88.70 (13)
K1—N1—S1—C1	-135.32 (17)	N1—Cl1—K1—S1 ^{iv}	121.32 (13)
Cl1—N1—S1—K1	74.7 (2)	O1—S1—K1—O2 ^{iv}	133.79 (18)
Cl1—N1—S1—K1 ⁱⁱⁱ	86.1 (3)	$O2$ — $S1$ — $K1$ — $O2^{iv}$	29.67 (14)
K1—N1—S1—K1 ⁱⁱⁱ	11.4 (2)	N1—S1—K1—O2 ^{iv}	-129.09 (17)
C2-C1-S1-01	-122.0 (4)	C1—S1—K1—O2 ^{iv}	-35.3 (3)
C6-C1-S1-01	58.6 (4)	K1 ⁱⁱⁱ —S1—K1—O2 ^{iv}	58.70 (9)
C2-C1-S1-02	2.5 (4)	01—S1—K1—O1 ⁱ	-21.3 (2)
C6—C1—S1—O2	-177.0 (4)	O2—S1—K1—O1 ⁱ	-125.4 (2)

C2-C1-S1-N1	125.4 (4)	N1—S1—K1—O1 ⁱ	75.80 (17)
C6-C1-S1-N1	-54.1 (4)	C1—S1—K1—O1 ⁱ	169.6 (2)
C2—C1—S1—K1	47.6 (5)	K1 ⁱⁱⁱ —S1—K1—O1 ⁱ	-96.41 (7)
C6-C1-S1-K1	-131.9 (3)	O1—S1—K1—O3	26.7 (3)
C2—C1—S1—K1 ⁱⁱⁱ	-32.7 (4)	O2—S1—K1—O3	-77.4 (4)
C6-C1-S1-K1 ⁱⁱⁱ	147.9 (4)	N1—S1—K1—O3	123.8 (3)
S1—N1—C11—K1	-80.9 (2)	C1—S1—K1—O3	-142.4 (4)
K1 ^{iv} —O3—K1—O2 ^{iv}	16.83 (11)	K1 ⁱⁱⁱ —S1—K1—O3	-48.4 (3)
K1 ^v —O3—K1—O2 ^{iv}	147.33 (11)	O1—S1—K1—O1 ^{vi}	-125.1 (2)
K1 ^{iv} —O3—K1—O1 ⁱ	177.77 (13)	O2—S1—K1—O1 ^{vi}	130.8 (2)
K1 ^v —O3—K1—O1 ⁱ	-51.73 (8)	N1—S1—K1—O1 ^{vi}	-28.01 (18)
K1 ^{iv} —O3—K1—O1 ^{vi}	-75.61 (12)	C1—S1—K1—O1 ^{vi}	65.8 (3)
K1 ^v —O3—K1—O1 ^{vi}	54.89 (9)	K1 ⁱⁱⁱ —S1—K1—O1 ^{vi}	159.78 (10)
K1 ^{iv} —O3—K1—O2	81.1 (2)	O1—S1—K1—O2	104.1 (3)
K1 ^v —O3—K1—O2	-148.38 (19)	N1—S1—K1—O2	-158.8 (2)
K1 ^{iv} —O3—K1—O3 ⁱⁱⁱ	104.84 (16)	C1—S1—K1—O2	-65.0 (3)
K1 ^v —O3—K1—O3 ⁱⁱⁱ	-124.66 (8)	K1 ⁱⁱⁱ —S1—K1—O2	29.03 (19)
K1 ^{iv} —O3—K1—O3 ^v	-130.50 (13)	O1—S1—K1—O3 ⁱⁱⁱ	49.11 (18)
K1 ^v —O3—K1—O3 ^v	0.0	O2—S1—K1—O3 ⁱⁱⁱ	-55.0 (2)
K1 ^{iv} —O3—K1—N1	-146.7 (2)	N1—S1—K1—O3 ⁱⁱⁱ	146.23 (17)
K1 ^v —O3—K1—N1	-16.2 (3)	C1—S1—K1—O3 ⁱⁱⁱ	-120.0 (2)
K1 ^{iv} —O3—K1—Cl1	-74.04 (19)	K1 ⁱⁱⁱ —S1—K1—O3 ⁱⁱⁱ	-25.98 (7)
K1 ^v —O3—K1—Cl1	56.46 (18)	O1—S1—K1—O3 ^v	-79.09 (17)
K1 ^{iv} —O3—K1—S1	127.9 (3)	O2—S1—K1—O3 ^v	176.8 (2)
K1 ^v —O3—K1—S1	-101.6 (3)	N1—S1—K1—O3 ^v	18.03 (16)
K1 ^{iv} —O3—K1—K1 ^v	-130.50 (13)	C1—S1—K1—O3 ^v	111.8 (2)
K1 ^{iv} —O3—K1—S1 ^{iv}	33.07 (9)	K1 ⁱⁱⁱ —S1—K1—O3 ^v	-154.17 (7)
K1 ^v —O3—K1—S1 ^{iv}	163.57 (7)	01—S1—K1—N1	-97.1 (2)
S1—O2—K1—O2 ^{iv}	-151.62 (13)	O2—S1—K1—N1	158.8 (2)
K1 ⁱⁱⁱ —O2—K1—O2 ^{iv}	69.51 (17)	C1—S1—K1—N1	93.8 (3)
S1—O2—K1—O1 ⁱ	57.6 (2)	K1 ⁱⁱⁱ —S1—K1—N1	-172.21 (16)
K1 ⁱⁱⁱ —O2—K1—O1 ⁱ	-81.31 (12)	O1—S1—K1—Cl1	-138.48 (17)
S1—O2—K1—O3	146.03 (19)	O2—S1—K1—Cl1	117.4 (2)
K1 ⁱⁱⁱ —O2—K1—O3	7.2 (3)	N1—S1—K1—Cl1	-41.36 (15)
S1-02-K1-01 ^{vi}	-69.3 (3)	C1—S1—K1—Cl1	52.4 (2)
K1 ⁱⁱⁱ —O2—K1—O1 ^{vi}	151.81 (13)	K1 ⁱⁱⁱ —S1—K1—Cl1	146.43 (5)
S1—O2—K1—O3 ⁱⁱⁱ	122.1 (2)	O1—S1—K1—K1 ^v	-64.54 (17)
K1 ⁱⁱⁱ —O2—K1—O3 ⁱⁱⁱ	-16.78 (11)	O2—S1—K1—K1 ^v	-168.7 (2)
S1—O2—K1—O3 ^v	-3.2 (2)	N1—S1—K1—K1 ^v	32.58 (16)
K1 ⁱⁱⁱ —O2—K1—O3 ^v	-142.05 (10)	C1—S1—K1—K1 ^v	126.4 (2)
S1—O2—K1—N1	-12.44 (15)	K1 ⁱⁱⁱ —S1—K1—K1 ^v	-139.63 (4)

K1 ⁱⁱⁱ —O2—K1—N1	-151.31 (18)	O1—S1—K1—S1 ^{iv}	119.89 (16)
S1—O2—K1—Cl1	-47.91 (15)	O2—S1—K1—S1 ^{iv}	15.8 (2)
K1 ⁱⁱⁱ —O2—K1—Cl1	173.22 (14)	N1—S1—K1—S1 ^{iv}	-142.99 (15)
K1 ⁱⁱⁱ —O2—K1—S1	-138.9 (3)	C1—S1—K1—S1 ^{iv}	-49.2 (2)
S1—O2—K1—K1 ^v	16.4 (3)	K1 ⁱⁱⁱ —S1—K1—S1 ^{iv}	44.80 (4)
$K1^{iii}$ —O2— $K1$ — $K1^{v}$	-122.42 (10)		

Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) x, y+1, z; (iii) -x+3/2, y+1/2, z; (iv) -x+3/2, y-1/2, z; (v) -x+2, -y, -z+1; (vi) x, y-1, z.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
O3—H31O…N1 ^{vii}	0.849 (10)	2.17 (3)	2.948 (5)	152 (5)
O3—H32O…N1 ^v	0.846 (10)	2.21 (3)	3.007 (5)	156 (5)
Symmetry codes: (vii) $x-1/2$, $-y+1/2$, $-z+1$; (v) $-x+2$	<i>z</i> , − <i>y</i> , − <i>z</i> +1.			

Fig. 1

